Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The approximately 11-year solar cycle has been shown to impact the heavy ion composition of the solar wind, even when accounting for streams of differing speeds; however, the heavy ion composition observed between the same specific phases of a past solar cycle and the current cycle has rarely, if ever, been compared. Here, we compare the heavy ion composition of the solar wind, as measuredin situduring the solar cycle 23 and 25 ascending phases. We examine the mean iron and oxygen charge state composition and the O7+/O6+ratio in multiple ranges of associated bulk wind speeds. Then, we compare the iron and oxygen charge state composition and relative abundance of iron to oxygen in the traditionally defined fast and slow solar wind. Finally, to determine the impact of individual ion contributions on the solar wind iron abundance, we examine individual ratios of iron and oxygen ions. Although the charge state composition remained broadly similar between these two ascending phases, both the O7+/O6+ratio and iron fractionation in fast-speed streams were higher in the solar cycle 25 ascending phase than they were during the solar cycle 23 ascending phase, suggesting that equatorial coronal hole fields more frequently reconnected with helmet streamers or active regions in the latter of the two ascending phases; however, more work will need to be done to connect these observations back to their coronal origins. The individual ion ratios used in this work provided a spectrum to analyze the aggregate elemental abundances, and this work, as a whole, is an important step in determining how conditions in the corona may vary between solar cycles between the same phases.more » « less
- 
            Kochmar, E; Bexte, M; Burstein, J; Horbach, A; Laarmann-Quante, R; Tack, A; Yaneva, V; Yuan, Z (Ed.)The practice of soliciting self-explanations from students is widely recognized for its pedagogical benefits. However, the labor-intensive effort required to manually assess students’ explanations makes it impractical for classroom settings. As a result, many current solutions to gauge students’ understanding during class are often limited to multiple choice or fill-in-the-blank questions, which are less effective at exposing misconceptions or helping students to understand and integrate new concepts. Recent advances in large language models (LLMs) present an opportunity to assess student explanations in real-time, making explanation-based classroom response systems feasible for implementation. In this work, we investigate LLM-based approaches for assessing the correctness of students’ explanations in response to undergraduate computer science questions. We investigate alternative prompting approaches for multiple LLMs (i.e., Llama 2, GPT-3.5, and GPT-4) and compare their performance to FLAN-T5 models trained in a fine-tuning manner. The results suggest that the highest accuracy and weighted F1 score were achieved by fine-tuning FLAN-T5, while an in-context learning approach with GPT-4 attains the highest macro F1 score.more » « less
- 
            Kochmar, E; Bexte, M; Burstein, J; Horbach, A; Laarmann-Quante, R; Tack, A; Yaneva, V; Yuan, Z (Ed.)
- 
            Abstract We used the stream-aligned magnetohydrodynamics (SA-MHD) model to simulate Carrington rotation 2210, which contains Parker Solar Probe’s (PSP) first perihelion at 36.5R⊙on 2018 November 6, to provide context to the in situ PSP observations by FIELDS and SWEAP. The SA-MHD model aligns the magnetic field with the velocity vector at each point, thereby allowing for clear connectivity between the spacecraft and the source regions on the Sun, without unphysical magnetic field structures. During this Carrington rotation, two stream interaction regions (SIRs) form, due to the deep solar minimum. We include the energy partitioning of the parallel and perpendicular ions and the isotropic electrons to investigate the temperature anisotropy through the compression regions to better understand the wave energy amplification and proton thermal energy partitioning in a global context. Overall, we found good agreement in all in situ plasma parameters between the SA-MHD results and the observations at PSP, STEREO-A, and Earth, including at PSP’s perihelion and through the compression region of the SIRs. In the typical solar wind, the parallel proton temperature is preferentially heated, except in the SIR, where there is an enhancement in the perpendicular proton temperature. This is further showcased in the ion cyclotron relaxation time, which shows a distinct decrease through the SIR compression regions. This work demonstrates the success of the Alfvén wave turbulence theory for predicting interplanetary magnetic turbulence levels, while self-consistently reproducing solar wind speeds, densities, and overall temperatures, including at small heliocentric distances and through SIR compression regions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available